Online Course in Science Journalism
Created by the WFSJ and SciDev.Net

Lesson 3
The interview
by Christina Scott

What does it take to make a good interview?
Passion, pain, peace, love and...
...understanding.
Welcome to the world’s first online course in science journalism, developed by the World Federation of Science Journalists in close cooperation with the Science and Development Network SciDev.Net.

3.1 Introduction

3.2 Get ready for the pre-interview

3.3 Who do you speak to first?

3.4 Persuading scientists to speak to you

3.5 Consider your interview type

3.6 Preparing for interviews about research

3.7 Use technology in interviews

3.8 Preparing the scientist for an interview

3.9 Getting the interview started

3.10 Live broadcast interviews

3.11 Edited broadcast interviews

3.12 Interviews for print and internet

3.13 Press conferences

3.14 "I don't understand"

3.15 "So what you're saying is..."

3.16 Keeping control of the interview

3.17 Questions for emergencies

3.18 Self-teaching questions (1-4)

3.19 Answers to self-teaching questions (1-4)

3.20 Assignments (1-4)

This project is Funded by:

International Development Research Centre (Canada) [http://www.idrc.ca/]
Department for International Development (UK) [http://www.dfid.gov.uk/]
Swedish International Development Agency (Sweden) [http://www.sida.se/]

See this Course online at www.wfsj.org/course/
3.1 Introduction

An interview can make or break a story. How to make the most out of interviews is a particularly tricky issue for science reporters, who must rely on highly specialised researchers who are more accustomed to lecturing students and writing for other academics than communicating with the general public.

Don't forget the fear factor: many scientists have no media training, worry that their reputation will be damaged by press coverage, and find interviews very scary indeed.

Don't lose sight of the ultimate goal of the interview: an interested and intrigued reader, viewer or listener.

Preparation is important, but not always possible. How to ask questions when you know nothing about the subject? How do you persuade a busy and stressed scientist to take the time to talk? How can you make a total stranger chat like an old friend? What if your notes do not accurately reflect the interview? These are all useful matters to consider.

In this chapter, you will work through these issues. Once you have done so, you should try to prepare and conduct interviews a little differently.
3.2 Get ready for the pre-interview

A pre-interview is normally a quick off-the-record interview in which you take notes but you don’t report on the interviewee's views. It helps you to understand the context of a development on which you are planning to report. Particularly for television and radio reporters, a pre-interview is often used to determine if a scientist might be a suitable candidate for broadcasting. Print reporters sometimes discover that they can use their pre-interview notes for the final article, in which case they may need to check with the source to make sure this is acceptable, as what people will say off the record is not always the same as what they say on the record.

Preliminary interviews can be useful whether you are a freelancer planning to pitch a story to an editor or you have already been assigned a story.

Email and face-to-face interviews can be too time-consuming for a pre-interview. What about phoning a local researcher for a brief (five minute) discussion? Maybe you can email them the relevant press release (if there is one) so they understand your needs. Pre-interviews can be a good way of double-checking any information you may have already gathered from search engines such as Google. Sometimes you need to check on a scientist's credentials, as some completely disreputable researchers can still have what appears to be an authoritative presence on the internet.

Jot down all the interview candidates recommended by the person you are pre-interviewing, and their contact details if available. If nothing else, you will improve your contact book, which will come in useful later.

Warning: Relying on the same people over and over again for pre-interviews is boring and risky, as scientists may only recommend colleagues or friends. See if you can discover a variety of people to interview, including rival researchers.
3.3 Who do you speak to first?

A wide range of people are suitable for pre-interviews. Journalists who have covered similar stories are one possibility. Within the science community, you may not want to speak to the most senior scientist in a pre-interview. They may be very busy. They may object to having their time wasted by a reporter who doesn't understand the subject.

Try the secretary of the most senior scientist instead: administrative officers often have a good grasp of issues, and can also suggest who might make the most interesting interview. Sometimes they can even tip you off about upcoming stories.

Post-graduates studying for their master's and doctoral degrees can be hard to track down by phone but are often hanging around science departments and are a good source of information. If one of them is particularly articulate, you may want to consider him or her for a formal interview. Young students sometimes make for better television than their older counterparts. At the same time, you may need to find diplomatic ways to explain to the most senior scientists why you are not concentrating on them; they often have the power to block your access to their colleagues. Emphasising that you know how busy they are or how important it is to present a diversity of views may be a good technique.

Now, in the early stages of the story, is a good time to ask for images. A good-quality picture or drawing can greatly aid your own understanding; ease your way into the interview by allowing you to ask the scientist something along the lines of "We're looking at a picture of what here?"; and may eventually be used to illustrate your final story. And sometimes, asking for pictures helps the person being interviewed understand the distinction between peer communication and mass communication. But check that the public relations people or scientists haven't infringed any copyright laws in giving you visuals and ensure that any photographer, cameraperson or artist is properly credited for their work.
3.4 Persuading scientists to speak to you

Most scientists are in favour of more science coverage in the media. But many would prefer to offer the latest incomprehensible research article from The Journal That Nobody Reads instead of an interview.

Explain that this is an exchange, a trade-off. Journalists give vital publicity to institutions, individuals and issues. We connect them to hundreds, thousands, even millions of people, including taxpayers and the next generation of scientists. In exchange, the scientists give us information.

Point out that funders, universities and ministries of science like to see reports on their research. Mention that many funding application formulas consider media interviews as an important part of science outreach and communication, so scientists can list this in their next application. Inevitably someone will ask for the funding agency to be identified in the report. You may wish to say "no." Don't be trapped into making a promise you can't keep.

If the scientist is still reluctant to agree to an interview, ask for after-hours numbers so you can read back the relevant parts of your script or article to ensure accuracy. (Emailing the complete story means you lose control of your article; phoning works better.) But never offer to do this if you don't intend to. Also, do not read back for politicians, including science ministers and their press officers or spokespersons. Watch out for people trying to distort what you've written. You can insist that this is for fact-checking only.

Make it clear that if you can't find the scientist and the deadlines are looming, you must submit the story anyway.

Remember that the taxpayer subsidises much science. The public needs to know how their investment has paid off. Refuse to take "no" for an answer. Show up unannounced if you have to, especially for controversies and exposés of misbehaviour.

For controversial stories, you can tell your interviewee that you're doing a controversial story and that they may not like it but you still want to know their perspective. Few refuse to be interviewed.

Be prepared for requests from scientists -- sometimes even before the interview is conducted -- to inspect articles and even radio and television packages, prior to publication or broadcast, as they would do with peer-reviewed journals. Internet stories seem to be particularly vulnerable to demands for changes from scientists, even those who have confirmed their own quotations or given their approval during the fact-checking process. You have to know where to draw the line. Sometimes you can suggest that if they have a problem with the story, they should contact their own press office to issue their own version of events. It is not your job to do public relations work on their behalf.
3.5 Consider your interview type

After your pre-interview, what type of on-the-record interview will you be conducting? Different types of interviews require different questions. Make clear in your head what type of interview you need for your news outlet. SciDev.Net will not require you to conduct a personal profile, for example.

What type of questions should you ask for:

- **a personality or profile interview?** Ask personal, intimate questions of the whole person, not just the scientist. You might speak to his or her colleagues, friends and family.
- **a research interview?** Focus this time on the results, their accuracy, the process, their implications.
- **a content or news interview?** A little interviewing with a wide range of people, including scientists, policy makers, educators and others, provides a broad perspective and multiple points of view.
- **an oppositional interview?** Sometimes known as "the devil's advocate" interview, this often provides a fast way to get the scientist to state his or her position clearly. Take a critical position. Ask, "Why should we care?" Argue on behalf of the most argumentative reader or audience member, because it gives an opportunity for the scientist to provide a very persuasive response.
- **an oppositional interview, but one where you ask the questions that other organisations have expressed?** Put the responsibility on someone else, whether you raise it as a question or a statement. An example: "Some environmental campaigners object to genetic modification..."

EXAMPLE 1:
On the National Public Radio (USA) programme Science Friday, host Ira Flatow interviews one of the authors of the Intergovernmental Panel on Climate Change report. http://www.sciencefriday.com/pages/2007/Feb/hour1_020207.html About seven minutes into the interview, you will hear Flatow say, "There are critics who say that you didn't go far enough in this report, that you really are coddling the issue a bit in your conclusions." He expresses the concerns of other organisations. Is the question phrased in a strong enough manner? What would you have asked?

EXAMPLE 2:
BBC radio’s Quentin Cooper presents a panel debate on African science policy, which aired on July 7, 2005 on the British programme Material World. Cooper interviews Calestous Juma of Harvard University and Geoff Oldham, chairperson of the board of SciDev.Net. http://www.bbc.co.uk/radio4/science/thematerialworld_20050707.shtml In one section, Cooper listens to some proposals, comments, "I see a clear danger in this..." and lists a few problems. And the guest agrees with him. Too much agreement can be boring. Would you do this differently?
3.5 Consider your interview type (continued)

A journalist should consider, prior to the interview, how much emotional distance will be needed between himself or herself and the subject of the interview. A normal interview is not meant to extend your circle of friends! There are a couple of situations that call for particular caution and a really determined interview style:

- **An exposé.** The science ministry didn't spend its funds, the research results were falsified, or the scientist didn't reveal his commercial interests? You need to come prepared for a confrontation. It's better first to interview the people making the allegations before confronting the person responsible. Record everything. Keep the recorder running even when you're shaking hands and saying goodbye. That is the time when people inadvertently release the most important information or reveal their innermost thoughts.

- **A corporate, government or institutional announcement.** This is not an interview and should be identified as a prepared statement or a press release. Many so-called science interviews are actually attempts by companies to get free publicity for their products. Did you find a neutral, independent, respected researcher to analyse the claims in advance? If so, you should challenge the hyped claims often made in such an interview.

- **A silly interview.** Are there really 181 things to do on the Moon, as NASA says? Can you conduct an interview in the middle of a condom testing laboratory? Science journalism can be very entertaining and if you can convince a scientist to play along, you will certainly win over your audience.

EXAMPLE:
This Newsnight programme aired on BBC television but is available here: [http://www.youtube.com/watch?v=fubJLYm4JJk] (or go to YouTube on the internet and type Royal Society in the search facility). A journalist who's been rubbishing claims of global warming is being confronted by writer and activist-journalist George Monbiot with evidence that all her so-called scientific research has in fact been paid for by front companies funnelling money from the oil industry. Confrontation can be perfectly polite. And useful, too. Watch how he does it.
3.6 Preparing for interviews about research

Lengthy, intimidating research articles that appear in journals like Nature and Science are important, so you need to learn how to report on the findings. But some of the big research projects can easily have more than a dozen authors from around the world. Where do you start?

A good starting point is to look at the names of the authors and see if anyone is from your country or speaks your language.

Don’t read the entire article. You will get lost and confused.

Read the abstract, which is a summary only a couple of paragraphs long, and the conclusions and recommendations. Email just a few questions to the lead author, whose contact details are always included. Read the editor’s comments or editorial – would the editor be a good interviewee? Email the editor a few questions too, or phone if you can.

Many reporters can add an extra question to the email: "Are there any local researchers who can speak on this issue?" Some information tends not to appear in research journals. For example, you need to ask about issues of interest to your audience, such as, "How soon will this make a difference?" when the interview is on new medical research, and where the testing process can take a decade or governments may not implement the research.

You will not have the time to cover all aspects of the research. Choose one particular angle and cover it thoroughly. Your questions must reflect your focus.
3.7 Use technology in interviews

If your boss can't afford to send you on trips, bring the world to your fingertips through technology:

- Take part in press conferences that are broadcast on the internet.
- Ask large institutions such as the World Bank to organise teleconferences when you receive their press releases.
- Interview by email – which may be particularly useful if you are working across different time zones.
- Download free software to make free international telephone calls (with a headset) from www.skype.com.
- Instant messaging interviews using software such as Skype are another possibility, even when you don't have microphone access at an internet café or a desktop computer. If the email goes down but the internet remains, use Skype's search facility to find and pre-interview other reporters or international scientists such as those mentioned in the research journals in the previous section.

These technologies bring the global scientist community to your desk for an interview. But there is a downside: no body language. The interview – unless you also have Skype video – is done without any eye contact. It's very hard to pick up the subtle physical clues that indicate the subject is avoiding an answer or has something further to say or that there's a colleague in the same room controlling the information. So this may be better used in preparation than in an on-the-record interview.

It is an excellent idea to record all interviews on a mini disk, digital or tape recorder as a backup. But don't put away your notebook and two pens – machines can break down. Make time before the interview to check batteries, disk storage, cables and everything else that could go wrong (including pens, which run out of ink!). And if it's a telephone interview, remember to tell your interviewee that you would like to record the interview. You may want to tell them that they can indicate during the interview whether a particular comment is off-the-record but then it has to be very clear to both participants when the interview is back on the record. And journalists should not allow scientists to decide after the interview which parts are off-record.
3.8 Preparing the scientist for an interview

Explain how you are going to use the interview – will it be for a 20-second comment in a two-minute news story on radio? Will it be four paragraphs or four pages long in a magazine or newspaper?

The scientist may request a list of questions in advance for their own preparation. An advance list of three to five questions can be a good ice-breaker but take care to warn the scientist that you will expect to ask other questions as the conversation evolves, and do not allow the scientist to read from a prepared answer. Hold back some questions too – you may prefer a more spontaneous answer. Or repeat the question later on, after the scientist has relaxed.

Some types of preparation are specific to certain types of media:

Live radio: Technical preparation is important. Warn interviewees not to breathe across the phone, to switch background cell phones off, and not to speak simultaneously – you do not get a second chance. Warn science guests that they will not have time to provide context, especially in response to the first question. This is a snack, not a full meal, by science standards.

Packaged radio: Anybody in a studio can do a question and answer session with an interviewee over a telephone line. A well-constructed, edited and packaged insert, which can range from two minutes to half-an-hour in length, gives you the opportunity to bring the listener right into the laboratory or the classroom, as if they were walking in the footsteps of the scientist. This means that quality of sound – especially natural sound – is critical. While the interview is still important, issues like question order become less significant. You may need to repeat questions to get the best sound as well as the most clarity on an issue, but you can also ask the scientist to demonstrate some aspect of his or her research and talk us through it. If time and battery power are not a problem, you can add some questions that you know will not be used in order to establish a rapport with the scientist. You may need to explain the situation fully to a scientist, so he or she knows that a range of people will be interviewed in a package. Otherwise, the scientist may assume that he or she is being profiled rather than being one voice among many, which may lead to unfulfilled expectations.

Live/studio television: Preparing the scientist for the intimidating surroundings of a studio can be as important as preparing a list of questions. Ensure that they know about the visual challenges of TV. Are they dressed appropriately for the interview? Do they know where to look? Can they bring props that illustrate the issue? Do they know what to do with their hands?

Packaged television: An interview is not enough. You need pictures of the scientist working and, perhaps, talking to you. Visuals of the scientist peering into a microscope or walking through a laboratory can be more important than what the scientist actually says. Have you warned the scientist about the length of time it can take to film a sequence of shots?
3.9 Getting the interview started

Location, location, location. Where do you do the interview? Not in a boring office – yours or theirs.

Try to find the lab where the actual research was done. Or in a factory making the new drugs. Or out in the field for agricultural research. Or in a hospital.

Wherever you are, try to prepare yourself the way you would for a job interview. Dress up rather than down, shake hands, make eye contact, refer to people by their correct title, sit well, pay attention, thank them later. Be ready to interview people who are older, younger, male, female, local or foreign. Treat them all professionally.

We all fall into patterns. Be aware of them. Don't interview ten government officials in a row. If organisations keep pointing you in the direction of elderly male scientists, insist on young females for a variety of voices and opinions.

Sometimes a public relations department has been involved in setting up the interview. Very few public relations departments are set up to assist media people; they tend to focus on making the institution look good. Never allow a PR official to sit in on an interview. Send them out for coffee instead. If for some reason you are unable to do so, place the PR people where you can see them, but the interviewee cannot. And then ignore them.

An interviewee will be judged and constrained if colleagues sit in on an interview. Try to interview them all as individuals. Remember that you are in charge. Don't give the microphone away. Keep it in your hand. If the interviewee begins to speak to the cameraman, stop, explain and re-do. If the interviewee begins to speak as if to experts, stop again. Your responsibility is to your audience.
3.10 Live broadcast interviews

On **live radio**, your first question must be the most interesting one, or your listener will switch off. The first question should not be broad, but to the point. The interviewee should not be able to escape from answering the question.

There is only the present moment in live radio. On longer talk radio phone-in programmes, questions (and answers) may need to be revisited again because the audience has changed while you have been on-air. If at all possible, warn the scientist to avoid saying things like "as I said before" and "as I said during the ad break."

If you can get the scientist into the radio studio instead of on the phone, the sound improves immeasurably. If you can do live radio from the actual place where the science takes place, then say so on-air: "I'm standing here where Dolly the sheep was cloned, with the men who cloned her..."

On **live television**, know your questions in advance, so you can make eye-to-eye contact with the scientist. Be prepared to drop the question order to make follow-up questions, depending on the answers.

Even with the intense time pressures of live interviews, always re-work the answer if you don't understand it - "In other words, the issue is ..." – rather than simply moving forward to the next question on your list.

Never assume that the viewer or listener was tuned in for the entire interview. Work detail and context and the issue at stake into as many questions as possible for the benefit of those who have just turned on their television or radio.

Never ask questions which result in the answers "yes" or "no", which can completely derail a live interview.

And never ask the type of question that allows the interviewee to take control of the conversation, such as, "What is important about your work?" A package for electronic media, or internet or print can simply delete such a question; live broadcasting does not have this option.
3.11 Edited broadcast interviews

For **packaged radio**, you want a variety of voices, all of them short.

It can help to ask the scientist being interviewed to use your question as the beginning of his or her response: "Why do we need malaria research?" "We need malaria research because..."

Avoid questions with time and date references. Use ambient sound – the sound of science in action – as much as possible. It brings the listener inside science. Explaining the sound is good. Getting the interviewee to explain the sound is better. For example, the interviewee might say, "This is the cow we used for testing tick bite vaccines..." followed by the sound of mooing.

For **packaged television**, be well prepared with a limited number of questions that get to the point. But at the same time, be ready to ask the same important question repeatedly until you get a useable quote. Don't hesitate to interrupt the scientist to say that his or her answer was too long – camera people and editors expect you, the journalist or producer, to deliver results quickly. You may need to return to the editing suite fast. Don't waste time indulging the desire of a scientist to explain everything – you can always suggest the possibility of a follow-up interview!
3.12 Interviews for print and internet

Many scientists are most comfortable with print, but internet sites are gaining in popularity. Articles online can often link to resources such as peer-reviewed research papers or the scientist's home page.

You need to let scientists know how much time they should invest in the interview. Is this a one-paragraph article or a two-page spread? A three-minute interview or a day-long in-depth effort? For tomorrow, or for the weekend?

Because your deadlines tend not to be as extreme as those in broadcasting, sometimes you can use the interview to build a relationship with the subject. Include some basic fact-checking questions, such as the correct spelling of the scientist's name and organisation, in order to wait for the researcher to relax. You may find it useful to begin with questions that indicate your level of knowledge of the subject, rather than the most important question. Consider taking a digital or cell phone photograph, just in case that's also needed, as visuals can help achieve greater prominence and placement for your article.
3.13 Press conferences

A press conference will be attended by all your competitors. Even if you ambush the speakers for a private discussion afterwards, articles about the event are likely to sound similar. Yet press conferences are a common source of interviews.

So make your articles sound different. Quietly arrange to speak with ordinary people affected by the issues, such as people living with the disease and the nurses and doctors who treat them, or a farmer who wants to grow the genetically modified crop. By the way, if you schedule these "real people" interviews prior to the press conference, you may be able to ask better questions during the press conference itself.

Press conferences often only allow the head of department or top-ranked researcher to speak. It’s much more interesting to interview a wide range of people involved in the research, such as laboratory technicians, post-graduate university students and fieldworkers, rather than just the top of the hierarchy.

Take one member of the panel aside after the press conference for a follow-up interview – this is your chance for an exclusive, for more personal information about the person, and new threads on what else to research or who else to interview.

It is always a good idea after a press conference to interview at least one specialist who can point out potential flaws in the research, or what needs to be done next, but you will need to find someone who has not been involved with the research, does not work in the same department and if possible, does not work for the same university.
3.14 "I don't understand"

A scientist says something completely incomprehensible. You put up your hand in the internationally recognised signal for slow down. "How do I explain that to my readers or audience back home?"

This is easily the most important question to remember in your science interview.

"I don't understand. Please explain it again."

Say it confidently: it's nothing to be ashamed of. Be prepared to say it over and over again until the interviewee explains it in a way that makes sense to you.

If you don't understand it, how will anyone else? Your responsibility is to your readers or your audience. You owe them this all-important question. Faking it is not an option. And these are not insulting questions. They do not demean the scientist.

Even for a print or internet story, the act of recording the interview should not take away the need to clarify things during an interview. It's tempting to think of the next question and hope that an answer will be clearer if you listen to it again on tape – but this is not likely. If it's not obvious to you during the interview, how can it be obvious to your reader?

Avoid technical terms and scientific concepts lifted from the scientist's research reports unless they are absolutely critical to the interview. If they are necessary, phrase the question so that it contains an explanation. Alternatively, coax your interviewee into explaining what is meant by the term or concept, whether it's a superconducting super collider in particle physics or "immunological memory" in vaccine research.

EXAMPLE:
The American Association for the Advancement of Science (AAAS) used one of their podcasts on December 22, 2006 to wrap up their list of the most interesting science of the year. Listen to it on [http://podcasts.aaas.org/science_podcast/SciencePodcast_061222.mp3] "Just what is the Poincaré conjecture?" is the first question in one section. The presenter prefaces it by warning that he is a non-mathematician. But the guest didn't pick up the coded reference, which is another way of urging people to explain things clearly. Did you understand the answer? Would you have asked another question as the first question in this segment of the podcast?
3.15 "So what you're saying is..."

The scientist says something in scientific terminology. Almost immediately, in your head, you translate this into your media publication's journalism style. Don't keep quiet. Feed it back into the conversation: "My paper will probably say ..." Or perhaps, "So if I understand you correctly, you're saying ..." You must insist on simple language.

You should not normally be interviewing for more than 10 minutes without asking a question to check your understanding. In fact, doing too many interviews longer than 30 minutes suggests that you did not do your homework and you haven't understood the issues. Consider going to the beginning of your notes and just recapping the material discussed earlier with the person being interviewed. You may want to check if you got all your questions answered. At the same time, if new information comes in, you have to be open to dropping your planned questions.

On the other hand, if you are doing a profile or a colour feature, you may be quite happy to simply follow the scientist around for the day while talking. That's fine.

And it's good to have a long interview if you are uncovering fraud or deceit of any kind. Just don't ask the critical question at the beginning, or it might be a very short interview! In a confrontational interview, you may have to "agree to disagree."

Leave the microphone on at the end of the interview. People start telling you all sorts of things once the interview appears to be over!
3.16 Keeping control of the interview

You may have to interrupt the scientist. Some scientists cannot stop talking once they’ve started. They go into educating mode. Say their full name, firmly and clearly. Repeat it if need be. And repeat it again, even if you are on air. You are in control of the interview. If the scientist refuses to respond, ad breaks can be useful in live radio and television. Print reporters put down their pens and cross their arms. Camera people turn off their cameras. Explain that you are not a dictate typist, and you cannot educate the audience, only inform them, in the space and time available. It is not possible to cram that much information into the public domain via journalism. A PhD takes time.

Sometimes scientists with dubious research – or those with commercial agendas – woo the media. A scientist who is happy to see a camera or a microphone is not necessarily a Good Sign. Sometimes you will have to say no to scientists whose research does not merit a story.

A corporate story? Proceed with caution. Is there evidence to back up the claims? Find a scientist to interview who has no financial or personal ties to the others.

Avoid talking to a scientist on their own level. Even if you know the subject well, it doesn’t help your reader or listener who is not a specialist in the field. Trying to put too much information into a story can also be dangerous.
3.17 Questions for emergencies

You don’t know the subject, you don’t know the name of the person you are interviewing, you have to finish the interview in five minutes – this is an emergency!

Ask for a business card if you don't know the name of the scientist. No card? Ask for the correct spelling of their full name.

On air? Ask them to introduce themselves. Then fake it.

"Briefly, what excites you about your work?"

This question, and its cousin, "What is the most important aspect of your work?" do not work very well for live interviews because the answer is inevitably too long.

So try a speedy alternative, like, "What kind of response has there been to your research?"

Or: "Describe the day when you made your discovery."

They may say, "No, no, no, this process took a dozen people working flat out for a decade." Great! That’s a good quote.

Try: "Tell us what scientific discoveries you made today" or "Why is your area of scientific discovery important (or relevant) for the ordinary citizen of this country?"

And ask, "What happens next in the process of discovery?"

If you return to the basics of the scientific research, link it to the needs of the community and intellectual exploration. You’ll find that a story resides in every interview – even if the interviewee happily admits that they find their subject absorbing and fascinating and don’t know if it helps anyone else. Many relevant scientific discoveries started in this fashion.

Another good question is, "What's the coolest thing about your work?"

This is deliberately crude and gets scientists giving a more personal and colourful view. A listener or reader may not know anything about bioinformatics but will still respond with interest to a scientist saying, "The really cool thing about bioinformatics is that you can go out into the wilderness, take your laptop, and sit and do your work."
3.18 Self-teaching questions (1-4)

The following questions should help you to revise the points of the Lesson Three e-lecture.

QUESTION 1:
A company announces a new herbal product will, they say, cure an important disease. All the claims and all the evidence come from the company. What is your first question for the following interviewees?

a. The company spokesperson
b. Someone suffering from the illness
c. A World Health Organisation representative
d. A local doctor

QUESTION 2:
While speaking to a representative of a science institution or ministry in a face-to-face interview, he or she says: "That question is not important. I'm not going to answer that question." How should you respond?

a. "Are you avoiding the question?"
b. "I can't force you to answer the question, but it does rather make you look as if you are dodging the issue."
c. You don't respond at all, you simply go on to the next question.
d. You repeat the question.
e. You avoid a confrontation but lay a complaint later with the interviewee's boss.

QUESTION 3:
There is an outbreak of bird flu in your region. A journalist has interviewed the following people, asking each person one question. Why is each one a bad question for that particular interview?

a. A subsistence-level chicken farmer, a grandmother operating in the informal economy; "Do you know how H5N1 works?"
b. A state veterinarian in charge of monitoring the country's biggest chicken market; "Why haven't you done more to fight bird flu?"
c. A bird life campaigner who says bird flu doesn't really exist but is a plot by the CIA and western intelligence agencies to destroy the indigenous economy; "Describe this plot by the CIA to make us believe in bird flu."
d. The owner of a large company owning many chicken farms as well as the distribution network which gets the poultry into the supermarkets; "Is the government doing enough to protect your chickens?"
e. A representative of the medical company marketing some of the drugs for avian influenza; "Is the government buying enough drugs from you?"

A local epidemiologist; "Can you tell me how many fatalities there have been in absolute terms and as a percentage of the chicken population, and then compare the situation with last year?"

QUESTION 4:
Powerful people can be intimidating to interview. But they are often quite accustomed to being asked questions, so sometimes the biggest obstacle is your own attitude. Write down
your main question as if you have been given a five-minute interview with the following people:

a. Nobel Peace Prize winner and first democratic president of South Africa, Nelson Mandela, on HIV/AIDS.
b. Your own government's prime minister or president, after the news breaks that his or her son is HIV positive.
c. The secretary-general of the United Nations on climate change.
d. The governor of the World Bank on the need to fund scientific research and development.
e. A quantum physics professor who's just been told that she's won this year's Nobel prize.
3.19 Answers to self-teaching questions (1-4)

QUESTION 1:
A company announces a new herbal product will, they say, cure an important disease. All the claims and all the evidence come from the company. What is your first question for the following interviewees?

a. The company spokesperson
b. Someone suffering from the illness
c. A World Health Organisation representative
d. A local doctor

Answer: A variety of first questions are possible, including the following:

a. Does someone else have independent, scientifically sound confirmation of the results?
b. Tell us about the day you discovered you had this disease.
c. What immediate steps need to be taken to deal with this illness?
d. How big a health risk is posed by this disease?

QUESTION 2:
While speaking to a representative of a science institution or ministry in a face-to-face interview, he or she says: "That question is not important. I'm not going to answer that question." How should you respond?

a. "Are you avoiding the question?"
b. "I can't force you to answer the question, but it does rather make you look as if you are dodging the issue."
c. You don't respond at all, you simply go on to the next question.
d. You repeat the question.
e. You avoid a confrontation but lay a complaint later with the interviewee's boss.

Answer:

a. An acceptable response, as long as it is delivered in a calm and professional manner. If journalist appears upset or irritated, it can suggest that you are taking the exchange personally.
b. A good response, because it leaves the way open for the person being interviewed to answer the original question.
c. A terrible response. You have now given control of the interview to the interviewee. You have abdicated!
d. A possible response, but it can be boring in broadcasting to hear the same question repeated in an identical manner. It might be suitable in interviews for print and internet reports, however.
e. This tactic does not rescue the actual interview. It may only be worth considering if you know that you need to interview this person on a regular basis.

QUESTION 3:
There is an outbreak of bird flu in your region. A journalist has interviewed the following people, asking each person one question. Why is each one a bad question for that particular interview?
a. A subsistence-level chicken farmer, a grandmother operating in the informal economy; "Do you know how H5N1 works?"

b. A state veterinarian in charge of monitoring the country's biggest chicken market; "Why haven't you done more to fight bird flu?"

c. A bird life campaigner who says bird flu doesn't really exist but is a plot by the CIA and western intelligence agencies to destroy the indigenous economy; "Describe this plot by the CIA to make us believe in bird flu."

d. The owner of a large company owning many chicken farms as well as the distribution network which gets the poultry into the supermarkets; "Is the government doing enough to protect your chickens?"

e. A representative of the medical company marketing some of the drugs for avian influenza; "Is the government buying enough drugs from you?"

f. A local epidemiologist; "Can you tell me how many fatalities there have been in absolute terms and as a percentage of the chicken population, and then compare the situation with last year?"

Answers:
A number of answers are possible, including:

a. You're likely to get either the answer "yes" or the answer "no," which doesn't take you very far. And it doesn't take advantage of the strengths of interviewing this kind of non-science person about a science issue.

b. We want to know what he does when he comes across a dead chicken. We don't want one individual blamed for all government policy, particularly when it comes to a highly infectious, little-understood illness. And the question doesn't ask anything interesting about his work. When asked the right questions, an Indian veterinarian once spoke about the stresses of fighting bird flu with no way to deal with sick fowl besides slaughtering them, and with laboratory results not appearing until months later.

c. In some circumstances, you could persuade an interviewee to ruin his own case in this manner, if your audience were sufficiently well-informed. But consider these recent incidents: a campaign to vaccinate against polio flounders in Nigeria and parts of India after allegations that vaccinated children become infertile as adults; the South African government refuses to believe in the existence of HIV/AIDS; the Gambian president claims that he can cure people of AIDS with herbs in three days; the Zimbabwean police confiscate women's sanitary supplies on the grounds that they are poisoned. It is essential in these situations to provide a balanced range of views so as not to give undue publicity to someone whose views do not merit coverage.

d. People will always agree that someone else should be doing more in a given situation. You want to find out what he's doing, not what he thinks the government should be doing.

e. Have you ever heard anyone from a drug company saying that they're selling too much?

f. Asking any question which results in a string of numbers is going to confuse you and your intended user of the story. Numbers should be kept to a minimum.
QUESTION 4:
Powerful people can be intimidating to interview. But they are often quite accustomed to being asked questions, so sometimes the biggest obstacle is your own attitudes. Write down your main question as if you have been given a five-minute interview with the following people on the following topics:

a. Nobel Peace Prize winner and first democratic president of South Africa, Nelson Mandela; HIV/AIDS.
b. Your own government's prime minister or president; news that his or her son is HIV positive.
c. The secretary-general of the United Nations; climate change.
d. The governor of the World Bank; the need to fund scientific research and development.
e. A quantum physics professor who's just been told that she's won this year's Nobel prize.

Answers:
A variety of answers are possible.
3.20 Assignments (1-4)

These assignments are related to the Lesson Three e-lecture. They are homework that you can do yourself and then discuss with a tutor, mentor or other mentees.

ASSIGNMENT 1: Interviews on a slow news day
Contact a science organisation in your country or region. There is an Academy of Science in most countries. You can find many of them under the "membership" button at the Academy of Sciences for the Developing World website at: [http://www.twas.org] or the Interacademy Panel on International Issues at: [http://www.interacademies.net]. Many countries have some version of a CSIR (Council for Scientific and Industrial Research). Or you could investigate some university science faculties. Track down their longest-serving scientist as well as their newest scientist. There has to be a story in there somewhere. If possible, visit in person and hang out in the cafeteria or wherever you can strike up conversations with the scientists. Identify yourself. Ask what they do. Ask if you can keep in touch with them. Ask what is interesting about their work. This is relationship-building. But it pays off: you may find yourself doing a personality profile, or previewing some still-in-the-pipeline science which hasn't been published yet, or reporting on the painstaking process of science or on funding cutbacks. This is what you do on a slow news day.

ASSIGNMENT 2: Getting more from an interview
This is a fairly easy exercise to work into your existing schedule.

a. When doing a face-to-face interview, take an additional 10 minutes to interview the person again in a completely different style. For example, if you were reporting on a hard news story, try to do a personality profile. If you were getting a sound bite for radio news, what about trying to do something for a programme or a talk show? You may well find you can use both interviews for different media outlets.

b. You can also do one same interview but consider it for different markets. Would you ask the same questions for an 800-word international science news website like SciDev.Net, for a three-paragraph story in the local daily newspaper, or for the news section of the journal Nature?

ASSIGNMENT 3: New technologies in interviews
Try to initiate and conduct a brief international interview through email, instant messaging, Skype, or any other technology, including cellphones. Try interviewing a colleague – a mentee or a journalist – who will be open to experimenting with new technology, but try not to pick someone in your own neighbourhood or country. If you are interested in the newest technologies, try to initiate your own free science blog or podcast in which you document your interviews.

ASSIGNMENT 4: Broaden your interview scope
Select your most unlikely candidate for a science-based interview. For example, if you hated mathematics, or never understood physics or your editor thinks geologists are irrelevant, pick someone with strengths in those areas. Try to understand some of their work, and try to do an interview on this topic – perhaps a personal interview, so you don't have to explain too much of the science, but ask about their life, their wife or husband and their children as well. And ask about why they love their work, rather than focus on the work itself without the personal touch. Write it up in under 800 words for an international audience. Send it to the non-profit website [http://www.scienceinafrica.co.za] if it is appropriate for their use, and it may be published, especially if you include a picture. They won't charge you for editing, and in exchange, you won't be paid.